Hybrid Electric, Plug-in Hybrid Electric and Battery Electric Vehicles

Part of the
GREEN ECONOMY SERIES

August 2017
Table of Contents

About this paper 3
Introduction 4
What will change, and what will stay the same? 5
What impacts will these changes have on the minerals sector? 6
What does this mean for the responsible sourcing of minerals? 7

Minerals

Colbalt 8
Graphite 9
Lithium 10
Aluminium 11
Copper 12
Lead 13
Nickel 14
Steel 15
Titanium 16
Silicon 17
Mica 18
Tin 19
Tantalum 20

About Levin Sources 21
References 22

About this paper

In Part One of our three-part series analysing the minerals behind the green economy, we look at the rise of Hybrid Electric Vehicles (HEVs), Plug-in Hybrid Electric Vehicles (PHEVs), and Battery Electric Vehicles (BEVs) and the minerals they require.

We consider how, as this sector grows, the demand for certain minerals will likely change, and for others stay the same, and what the greening of the automotive sector means for the responsible sourcing of minerals.

The paper is split into two sections:

1. **What will change and stay the same, and the impacts changes will have on responsible sourcing and the mineral sector**

2. **An in-depth look at how 13 individual metals are involved in the shift towards a green economy**

We welcome your feedback, comments and questions on the contents of this paper. Please do not hesitate to get in touch with our expert team:

hello@levinsources.com

The contents of this document falls under the Creative Commons Attribution Non-Commercial Share Alike license. If you use this data, please credit Levin Sources.

Disclaimer: This document is prepared from sources and data which Levin Sources believes to be reliable, but Levin Sources makes no representation as to its accuracy or completeness. The report is provided for informational purposes and is not to be construed as providing endorsements, representations or warranties of any kind whatsoever. Levin Sources accepts no liability for any consequences whatsoever for applying any of the information provided in this report. Opinions and information provided are made as of the date of the report issue and are subject to change without notice. The report does not necessarily represent the views of the organisations mentioned herein.*
The race for a greener automotive future is on. At the Paris COP21 Conference in August 2017, the UK Government pledged that all of its vehicles will be zero emission by 2050; Volvo declared it would only make electric and hybrid cars from 2019 onwards; and France declared an intention to ban all diesel/petrol only vehicles by 2040.

Battery Electric Vehicles (BEVs), Hybrid Electric Vehicles (HEVs) and Plug-in Hybrid Electric Vehicles (PHEVs) have been embraced by governments and industry alike to a previously unforeseen degree. HEVs are powered by both an Internal Combustion Engine (ICE) and an electric motor; their batteries are charged by the operation of the ICE, or by the kinetic energy of the car. BEVs are powered only by batteries, and need to be recharged at a plug-in station.

PHEVs are similar to HEVs, however their batteries can be recharged at a plug-in station. While there are a wide variety of estimates on rates of dissemination of these vehicles, one position is that global BEV and PHEV sales could reach 17 million by 2030.

As demand for BEVs, HEVs and PHEVs increases, the mineral profile of the vehicles on our roads will change. These vehicles require new, and larger volumes of certain minerals that ICE powered vehicles do not. At the same time, certain minerals will be used at more or less the same amount in all vehicle groups.

"We are taking bold action and want nearly every car and van on UK roads to be zero emission by 2050 which is why we've committed to investing more than £600m in the development, manufacture and use of ultra-low emission vehicles by 2020."

- Chris Grayling, Secretary of State for Transport, British Department for Transport
The battery chemistry of BEVs, HEVs and PHEVs can vary; Lithium Cobalt Oxide (LCO), Lithium Nickel Manganese Cobalt Oxide (NMC), Lithium Nickel Cobalt Aluminium Oxide (NCA), and Lithium Iron Phosphate (LFP) currently dominate the market, with the expectation that batteries with greater nickel content, and thus superior energy density, will become industry leaders.

Other metals expected to increase in demand include copper, lead, titanium, and silicon, which are primarily used in the wiring and construction of batteries. However, this is all dependent upon which type of battery chemistry ultimately prevails.

China is currently developing its own battery technology that will likely differ from existing models, and will thus require different types and volumes of minerals. The determination of which battery chemistry will dominate the future market will be based on an assessment of overall cost and performance. The rates at which in-demand metals are recycled will also determine their demand.

Regardless, as the market for BEVs, HEVs and PHEVs grows, demand for minerals needed in ICE powered vehicles will decline, for example the platinum group metals used in catalytic converters (platinum, palladium, and rhodium).

Other minerals will likely remain essential to all vehicle groups, such as mica, tin and tantalum.

Mica is a key component of automotive paint; tin is commonly used in electroplating and soldering; and tantalum is essential to vehicle computer and audio systems.
What impacts will these changes have on the minerals sector?

The minerals sector will have to adjust to increasing demand for particular minerals. For example, current cobalt production stands at 100,000 tonnes a year, but an additional 260,000 tonnes per annum could be required to meet BEV, HEV and PHEV demand by 2030. Annual production of lithium, which is currently a very small industry, will need to increase from 182,000 tonnes to 3.1 million tonnes over 20 years. Meanwhile, the battery anode market for graphite has been forecast to more than triple in the next five years.

This shift in demand will see greater dependence on the mineral resources of particular countries. The World Bank has recently highlighted many developing and emerging economies that have significant reserves of minerals vital to the (existing) BEV, HEV and PHEV sector, as follows:

- Bolivia has 9 million tons of lithium in reserves
- The Democratic Republic of the Congo (DRC) has substantial lithium (1 million tons) and cobalt (3.4 million tons) reserves
- Guinea holds up to 26% of global bauxite reserves (a necessary mineral for aluminium production)
- Argentina and Chile boast significant lithium reserves, and the latter also has important copper deposits yet to be tapped
- New Caledonia has enormous supplies of nickel, with an estimated 8.4 million metric tons still to be exploited

- Other important nickel countries with developing and emerging economies include Cuba (5.5 million), Indonesia (4.5 million), the Philippines (4.8 million), Guatemala (1.8 million), Madagascar (1.6 million) and Colombia (1.1 million)
- Developing countries produce 77% of the world’s silicon;
- China is a dominant producer (featuring as top five producer nation for aluminium, steel, lithium, silicon, titanium) and consumer of all the BEV, HEV and PHEV metals
- China has a virtual monopoly on the world’s rare earths elements—metals vital to the BEV, HEV and PHEV sector.
What does this mean for the responsible sourcing of minerals?

Companies are coming under increasing scrutiny as to whether they source minerals in a responsible way—whether they consider human rights, integrity and environmental performance factors when managing their supply chains.

Many of the minerals vital to BEVs, HEVs and PHEVs are mined in regions that are more high-risk when it comes to human rights and integrity risks, including child and forced labour, unsafe working conditions, unchecked environmental degradation, and corruption.

For example, child or forced labour have been identified in the mining industries of the DRC, Madagascar, Guinea, Bolivia, Colombia, the Philippines and Indonesia.

The 2016 Corruption Perceptions Index ranking of the majority of the above mentioned countries is also poor; out of 176 assessed countries, the results are as follows: DRC (156th); Madagascar (145th); Guatemala (136th); Argentina (95th); Guinea (142nd); Bolivia (113th); Colombia (90th); the Philippines (101st); and Indonesia (90th) *.

The BEV, HEV and PHEV sector is not unique in the responsible sourcing challenges it will face—these are common across virtually every extractives-reliant industry. However, component and vehicle manufacturers in this sector can take proactive steps to manage risks in their supply chains and ensure that they are not contributing to human rights abuses, unmitigated environmental impacts, and corruption. Conducting supply chain due diligence is an important first step to assessing risk in a supply chain, after which a process can be initiated to mitigate and remediate identified risks.

Companies in the BEV, HEV and PHEV sector should prepare themselves to expand the scope of their due diligence which traditionally has been focused on conflict minerals—tin, tungsten, tantalum and gold—to include a broader selection of minerals, including those named above. This will help them to tackle these risks early and head-on, prevent any reputational or financial losses, and contribute to the stable development of these countries’ mining industries.

*The lower the ranking of a country, out of 176 assessed, the higher the perception of corruption.
Cobalt (Co)

New to electric vehicle supply chains

<table>
<thead>
<tr>
<th>Where found in car</th>
<th>Battery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Where produced</td>
<td>The Democratic Republic of the Congo (DRC), China, Canada, Russia, Australia</td>
</tr>
<tr>
<td>Biggest market</td>
<td>China</td>
</tr>
<tr>
<td>Extraction method</td>
<td>Rarely extracted from ore alone; often a by-product of copper and nickel mining</td>
</tr>
<tr>
<td>ASM/LSM</td>
<td>ASM and LSM</td>
</tr>
<tr>
<td>Risks</td>
<td>Child labour; environmental degradation; smuggling; health and safety concerns, human rights abuses</td>
</tr>
<tr>
<td>Who is working on this?</td>
<td>Responsible Cobalt Initiative, Responsible Raw Materials Initiative</td>
</tr>
<tr>
<td>Increase or decrease in demand</td>
<td>Increase</td>
</tr>
</tbody>
</table>

Additional information: Madagascar is also a significant producer of cobalt, co-produced with nickel.
Graphite (Allotrope of C)
New to electric vehicle supply chains

<table>
<thead>
<tr>
<th>Where found in car</th>
<th>Battery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Where produced</td>
<td>China, India, Brazil, Turkey, North Korea</td>
</tr>
<tr>
<td>Biggest market</td>
<td>China</td>
</tr>
<tr>
<td>Extraction method</td>
<td>Open-pit (for lake and micro-crystalline graphite) and underground shaft mines (for lump graphite)</td>
</tr>
<tr>
<td>ASM/LSM</td>
<td>Mostly LSM, some Small-scale mines</td>
</tr>
<tr>
<td>Risks</td>
<td>Pollution, health concerns, poor labour conditions, environmental concerns</td>
</tr>
<tr>
<td>Who is working on this?</td>
<td>Institute of Public and Environmental Affairs</td>
</tr>
<tr>
<td>Increase or decrease in demand</td>
<td>Increase</td>
</tr>
</tbody>
</table>

Additional information: Benchmark Mineral Intelligence forecasts that the battery anode market for graphite will increase from 80,000 tonnes in 2015 to 250,000 tonnes by the end of 2020.

Madagascar also a minor producer, with significant reserves.
Lithium (Li)

New to electric vehicle supply chains

<table>
<thead>
<tr>
<th>Where found in car</th>
<th>Battery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Where produced</td>
<td>Australia, Chile, China, Argentina, Zimbabwe</td>
</tr>
<tr>
<td>Biggest market</td>
<td>China</td>
</tr>
<tr>
<td>Extraction method</td>
<td>Hard rock mining; Pump out brine and leave to evaporate</td>
</tr>
<tr>
<td>ASM/LSM</td>
<td>LSM only</td>
</tr>
<tr>
<td>Risks</td>
<td>Water and energy intensive; pollution (water, air, land), violations of indigenous rights, high levels of waste (little to no recycling)</td>
</tr>
<tr>
<td>Who is working on this?</td>
<td>Australian Battery Recycling Initiative Responsible Battery Coalition</td>
</tr>
<tr>
<td>Increase or decrease in demand</td>
<td>Increase</td>
</tr>
</tbody>
</table>

Additional information: Estimated reserves for Bolivia is 9 million tonnes.
Aluminium (Al)

Increased demand

<table>
<thead>
<tr>
<th>Where found in car</th>
<th>Body, battery, wheels</th>
</tr>
</thead>
</table>
| Where produced | Bauxite: Australia, China, Brazil, Guinea, India
Alumina: China, Australia, Brazil, Jamaica, USA
Aluminium: China, Russia, Canada, India, UAE |
| Biggest market | China |
| Extraction method | Bauxite is typically mined open-cast, ore is refined to
alumina oxide, then smelted into aluminium |
| ASM/LSM | LSM only |
| Risks | Violations of indigenous rights, tensions over land use,
processing water and energy intensive, pollution |
| Potential for positive impact | Increased used of environmentally friendly methods for production; land restoration; recycling |
| Who is working on this? | The Aluminium Stewardship Initiative |
| Increase or decrease in demand | Increase |

Additional information: 26% of known global bauxite reserves are in Guinea.
Copper (Cu)
Increased demand

<table>
<thead>
<tr>
<th>Where found in car</th>
<th>Battery, interior wiring, motor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Where produced</td>
<td>Chile, Peru, China, USA, Australia</td>
</tr>
<tr>
<td>Biggest market</td>
<td>China</td>
</tr>
<tr>
<td>Extraction method</td>
<td>Extraction of copper, followed by beneficiation, smelting, refining and fabrication</td>
</tr>
<tr>
<td>ASM/LSM</td>
<td>ASM and LSM</td>
</tr>
<tr>
<td>Risks</td>
<td>Dangerous working conditions, environmental damage and ecological impact, energy intensive, underpayment</td>
</tr>
<tr>
<td>Potential for positive impact</td>
<td>Recycling (copper is the most recycled material in the world)</td>
</tr>
<tr>
<td>Who is working on this?</td>
<td>Clean Copper Supply Chain Alliance</td>
</tr>
<tr>
<td>Increase or decrease in demand</td>
<td>Increase</td>
</tr>
</tbody>
</table>

Additional information: Zambia also produces a large amount of copper.
Lead (Pb)

Increased demand

<table>
<thead>
<tr>
<th>Where found in car</th>
<th>Battery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Where produced</td>
<td>China, Australia, USA, Peru, Mexico</td>
</tr>
<tr>
<td>Biggest market</td>
<td>China</td>
</tr>
<tr>
<td>Extraction method</td>
<td>Extraction of lead ore, followed by concentration and conversion.</td>
</tr>
<tr>
<td>ASM/LSM</td>
<td>LSM only</td>
</tr>
<tr>
<td>Risks</td>
<td>Health risks, pollution, energy intensive, environmental damage</td>
</tr>
<tr>
<td>Potential for positive impact</td>
<td>Recycling</td>
</tr>
<tr>
<td>Who is working on this?</td>
<td>World Health Organization (WHO) International Lead and Zinc Study Group</td>
</tr>
<tr>
<td>Increase or decrease in demand</td>
<td>Increase</td>
</tr>
</tbody>
</table>

Additional information: In 2014, more lead was produced via recycling than mining.
Nickel (Ni)

Increased demand

<table>
<thead>
<tr>
<th>Where found in car</th>
<th>Battery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Where produced</td>
<td>The Philippines, Russia, Canada, Australia, New Caledonia</td>
</tr>
<tr>
<td>Biggest market</td>
<td>China</td>
</tr>
<tr>
<td>Extraction method</td>
<td>Underground tunnelling for sulphide deposits. Open-pit mining for laterite deposits, following by leaching with acids at high temperatures</td>
</tr>
<tr>
<td>ASM/LSM</td>
<td>LSM only</td>
</tr>
<tr>
<td>Risks</td>
<td>Health risks, violation of indigenous rights, violence, human rights abuses, environmental damage</td>
</tr>
<tr>
<td>Potential for positive impact</td>
<td>Recycling</td>
</tr>
<tr>
<td>Who is working on this?</td>
<td>International Nickel Study Group</td>
</tr>
<tr>
<td>Increase or decrease in demand</td>
<td>Increase</td>
</tr>
</tbody>
</table>

Additional information: Madagascar is also a significant producer of nickel, co-produced with cobalt.
Steel (Alloy of Fe, C, others)
Increased demand

<table>
<thead>
<tr>
<th>Where found in car</th>
<th>Body, motor, wheels, battery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Where produced</td>
<td>Iron ore: China, Australia, Brazil, India, Russia</td>
</tr>
<tr>
<td></td>
<td>Steel production: China, Japan, USA, Russia, South Korea</td>
</tr>
<tr>
<td>Biggest market</td>
<td>China</td>
</tr>
<tr>
<td>Extraction method</td>
<td>Steel is an alloy of iron, carbon, and fluxes such as limestone, as well as scrap steel</td>
</tr>
<tr>
<td>ASM/LSM</td>
<td>ASM and LSM</td>
</tr>
<tr>
<td>Risks</td>
<td>Use of fossil fuels, soil erosion, pollution (water, noise, air), health and safety, loss of habitats and areas of natural importance, health issues, child labour</td>
</tr>
<tr>
<td>Potential for positive impact</td>
<td>Recycling</td>
</tr>
<tr>
<td>Who is working on this?</td>
<td>Australian Steel Stewardship Forum</td>
</tr>
<tr>
<td>Increase or decrease in demand</td>
<td>Increase</td>
</tr>
</tbody>
</table>

Additional information: 26% of known global bauxite reserves are in Guinea.
Titanium (Ti)

Increased demand

<table>
<thead>
<tr>
<th>Where found in car</th>
<th>Batter reinforcement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Where produced</td>
<td>China, Russia, Japan, Kazakhstan, Ukraine</td>
</tr>
<tr>
<td>Biggest market</td>
<td>China</td>
</tr>
<tr>
<td>ASM/LSM</td>
<td>ASM and LSM</td>
</tr>
<tr>
<td>Risks</td>
<td>Environmental damage, energy intensive, waste</td>
</tr>
<tr>
<td>Potential for positive impact</td>
<td>Recycling</td>
</tr>
<tr>
<td>Increase or decrease in demand</td>
<td>Increase</td>
</tr>
</tbody>
</table>

Additional information: Madagascar and South Africa are also significant producers of titanium, with loss of coastal forest a major environmental risk in Madagascar.
Silicon (Si)

Increased demand

<table>
<thead>
<tr>
<th>Where found in car</th>
<th>Window, battery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Where produced</td>
<td>China, Russia, USA, Norway, France</td>
</tr>
<tr>
<td>Biggest market</td>
<td>China</td>
</tr>
<tr>
<td>Extraction method</td>
<td>Large-scale dredging operations</td>
</tr>
<tr>
<td>ASM/LSM</td>
<td>LSM only</td>
</tr>
<tr>
<td>Risks</td>
<td>Environmental damage, health and safety concerns</td>
</tr>
<tr>
<td>Potential for positive impact</td>
<td>Some recycling</td>
</tr>
<tr>
<td>Who is working on this?</td>
<td>Earthworks</td>
</tr>
<tr>
<td>Increase or decrease in demand</td>
<td>Increase</td>
</tr>
</tbody>
</table>

Additional information: Silicon is the second-most abundant element in the earth's crust, occurring in sand as quartz grains, or as flint.
Mica (Group of phyllosilicate minerals)

Still in use

<table>
<thead>
<tr>
<th>Where found in car</th>
<th>Paint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Where produced</td>
<td>China, Russia, Finland, USA, South Korea</td>
</tr>
<tr>
<td>Biggest market</td>
<td>Japan</td>
</tr>
<tr>
<td>Extraction method</td>
<td>Open-pit or shaft mining</td>
</tr>
<tr>
<td>ASM/LSM</td>
<td>ASM and LSM</td>
</tr>
</tbody>
</table>

Risks
- Illegal exploitation
- Child labour
- Health and safety concerns
- Environmental damage
- Poor labour conditions
- Human rights abuses
- Extortion
- Conflict financing
- Forced labour

Who is working on this?
- SOMO and Terres des Hommes
- Bachpan Bachao Andolan (Save the Childhood Campaign)
- Responsible Mica Initiative

Increase or decrease in demand
- Increase not determined by shift towards green economy

Additional information: Mica is the name given to a group of 37 minerals that are physically or chemically similar. They are formed as layers in the ground which can easily be split into sheets. The mica industry is split into two: those producing flake mica (open-pit mining) and those producing sheet mica (shaft or open-pit).

Madagascar is also a minor small-scale producer of mica.
Tin (Sn)

Still in use

<table>
<thead>
<tr>
<th>Where found in car</th>
<th>LCDs, audio components, controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Where produced</td>
<td>China, Indonesia, Peru, Bolivia, Brazil</td>
</tr>
<tr>
<td>Biggest market</td>
<td>China</td>
</tr>
<tr>
<td>Extraction method</td>
<td>Hard rock mining, alluvial mining</td>
</tr>
<tr>
<td>ASM/LSM</td>
<td>ASM and LSM</td>
</tr>
<tr>
<td>Risks</td>
<td>Illegal exploitation, environmental damage, loss of land, ecological impact, conflict financing, human rights abuses, health and safety concerns, child labour</td>
</tr>
</tbody>
</table>

Who is working on this?

- ITRI - ITSCI
- IDH Indonesian Tin Working Group
- Conflict-Free Sourcing Initiative
- Electronic Industry Citizenship Coalition
- Enough Project
- Organisation for Economic Cooperation and Development
- Global Witness
- Responsible Raw Materials Initiative

Increase or decrease in demand

Increase not determined by shift towards green economy
Tantalum (Ta)

Still in use

<table>
<thead>
<tr>
<th>Where found in car</th>
<th>LCDs, audio components, controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Where produced</td>
<td>The Democratic Republic of the Congo (DRC), Rwanda, Brazil, China</td>
</tr>
<tr>
<td>Biggest market</td>
<td>China</td>
</tr>
<tr>
<td>Extraction method</td>
<td>Typically open-pit mining</td>
</tr>
<tr>
<td>ASM/LSM</td>
<td>ASM (especially in DRC) and LSM</td>
</tr>
<tr>
<td>Risks</td>
<td>Illegal exploitation, smuggling, conflict financing, human rights abuses, poor working conditions, forced labour, health and safety concerns, child labour</td>
</tr>
<tr>
<td>Who is working on this?</td>
<td>Conflict-Free Sourcing Initiative, Electronic Industry Citizenship Coalition, Enough Project, Organisation for Economic Cooperation and Development, Global Witness, Responsible Raw Materials Initiative</td>
</tr>
<tr>
<td>Increase or decrease in demand</td>
<td>Increase not determined by shift towards green economy</td>
</tr>
</tbody>
</table>
Levin Sources is a consultancy and social venture that moves more raw materials through systems where good governance and better business are the norm.

For more than seven years, we have been at the forefront of responsible mining and sourcing, with unique expertise in issues surrounding raw material sustainability and artisanal and small-scale mining.

We are a core team of strategists, researchers, project managers, educators and communicators with multidisciplinary abilities and a collective expert knowledge in sustainable supply chains, extractives, minerals science & engineering, biodiversity and conservation, human rights and vulnerable groups, responsible business conduct and good governance.

We are proud of our global network and the complementary skills and experience of our team. We deploy these assets to find innovative and practical solutions to complex issues in mineral global supply chains.

We are trusted by the full diversity of players in the minerals system, from Fortune 500 companies and SMEs to industry associations and certification bodies to NGOs and civil society to governments in fragile states and in G20 economies.

“ Our goal is to drive raw materials through systems where good governance and better business are the norm, building resilient futures for us all.”

Find out more
References

Cobalt

Crawford, Alex. ‘Meet Dorsen, 8, who mines cobalt to make your smartphone work’ Accessed 7 August 2017 via http://news.sky.com/story/meet-dorsen-8-who-mines-cobalt-to-make-your-smartphone-work-10784120

Graphite

Desjardins, Jeff. October 27 2016. ‘Here are the raw materials we need to fuel the electric car boom’ Accessed 4 August 2017 via http://uk.businessinsider.com/materials-needed-to-fuel-electric-car-boom-2016-10

Benchmark Mineral Intelligence. May 4 2016. ‘GRAPHITE DEMAND FROM LITHIUM ION BATTERIES TO MORE THAN TREBLE IN 4 YEARS’ Accessed 4 August 2017 via http://benchmarkminerals.com/graphite-demand-from-lithium-ion-batteries-to-more-than-treble-in-4-years/

Whoriskey, Peter. 2 October 2016. ‘IN YOUR PHONE, IN THEIR AIR: A trace of graphite is in consumer tech. In these Chinese villages, it’s everywhere’ Accessed 8 August 2017 via https://www.washingtonpost.com/graphics/business/batteries/graphite-mining-pollution-in-china/

Lithium

References

Lithium (cont.)

Aluminium

Index Mundi. ‘Alumina Production by Country (Thousand metric tons)’ Accessed 3 August 2017 via http://www.indexmundi.com/minerals/?product=alumina

Copper

Copper Development Association Inc. ‘Copper- from beginning to end.’ Accessed 7 August 2017 via http://www.copper.org/education/copper-production/

References

Copper (cont.)

F6S. ‘Clean Copper Supply Chain Alliance, pbc.’ Accessed 7 August 2017 via https://www.f6s.com/cleancoppersupplychainalliance

Lead

Davidson, A.; Ryman, J.; Sutherland, C. A.; et al. (2014). “Lead.” Ullmann’s Encyclopaedia of Industrial Chemistry.

Nickel

References

Nickel (cont.)

Steel

Titanium

Lane, Deidre A. August 1 1991. ‘Pollution Caused by Waste From the Titanium Dioxide Industry: Directive 89/428’ (Volume 14, Issue 2 Symposium on European Community Environmental Law)

Silicon

References

Silicon (cont.)

Minnesota Pollution Control Agency. ‘Silica sand mining’ Accessed 7 August 2017 via https://www.pca.state.mn.us/air/silica-sand-mining

Mica

Tantalum

References

Tantalum (cont.)

Tin

ITRI. ‘ITSCI Project Overview’ Accessed 8 August 2017 via https://www.itri.co.uk/itsci/itsci-project-overview/itsci-project-overview

